Skip to main content

Chi Square Distribution

Shape of Distribution

Basic Properties

  • One parameter NN is required (Positive integer)
  • Continuous distribution defined on semi-bounded range x0x \geq 0
  • This distribution is asymmetric.

Probability

  • Probability density function

    f(x)=12N2Γ(N2)exp(x2)xN21f(x)=\frac{1}{2^{\frac{N}{2}}\Gamma\left(\frac{N}{2}\right)}\exp\left(-\frac{x}{2}\right)x^{\frac{N}{2}-1}

    , where Γ()\Gamma(\cdot) is gamma function.

  • Cumulative distribution function

    F(x)=Γx2(N2)Γ(N2)F(x)=\frac{\Gamma_{\frac{x}{2}}\left(\frac{N}{2}\right)}{\Gamma\left(\frac{N}{2}\right)}

    , where Γx()\Gamma_{x}(\cdot) is incomplete gamma function.

  • How to compute these on Excel.

AB
1DataDescription
25Value for which you want the distribution
39Value of parameter N
4FormulaDescription (Result)
5=NTCHISQDIST(A2,A3,TRUE)Cumulative distribution function for the terms above
6=NTCHISQDIST(A2,A3,FALSE)Probability density function for the terms above

Characteristics

Mean -- Where is the "center" of the distribution? (Definition)

  • Mean of the distribution is given as

    NN
  • How to compute this on Excel

AB
1DataDescription
29Value of parameter N
3FormulaDescription (Result)
4=NTCHISQMEAN(A2)Mean of the distribution for the terms above

Standard Deviation -- How wide does the distribution spread? (Definition)

AB
1DataDescription
29Value of parameter N
3FormulaDescription (Result)
4=NTCHISQSTDEV(A2)Standard deviation of the distribution for the terms above

Skewness -- Which side is the distribution distorted into? (Definition)

  • Skewness of the distribution is given as

    8N\sqrt{\frac{8}{N}}
  • How to compute this on Excel

AB
1DataDescription
29Value of parameter Alpha
3FormulaDescription (Result)
4=NTCHISQSKEW(A2)Skewness of the distribution for the terms above

Kurtosis -- Sharp or Dull, consequently Fat Tail or Thin Tail (Definition)

  • Kurtosis of the distribution is given as

    12N\frac{12}{N}
  • This distribution can be leptokurtic or platykurtic.

  • How to compute this on Excel

AB
1DataDescription
29Value of parameter N
3FormulaDescription (Result)
4=NTCHISQKURT(A2)Kurtosis of the distribution for the terms above

Random Numbers

  • How to generate random numbers on Excel.
AB
1DataDescription
29Value of parameter N
3FormulaDescription (Result)
4=NTRANDCHISQ(100,A2,0)100 chi square deviates based on Mersenne-Twister algorithm for which the parameters above

Note The formula in the example must be entered as an array formula. After copying the example to a blank worksheet, select the range A5:A104 starting with the formula cell. Press F2, and then press CTRL+SHIFT+ENTER.

NtRand Functions

Reference