Skip to main content

Truncated Normal Distribution

Where will you meet this distribution?

Shape of Distribution

Basic Properties

  • Four parameters a,b,m,σa, b,m,\sigma are required (How can you get these).

    a<ba<b σ>0\sigma>0
  • Continuous distribution defined on bounded range axba\leq x \leq b

  • This distribution can be symmetric or asymmetric.

Probability

  • Cumulative distribution function

    F(x)=1Δ[Φ(xmσ)Φ(A)]F(x)=\frac{1}{\Delta}\left[\Phi\left(\frac{x-m}{\sigma}\right)-\Phi(A)\right]

    where

    Δ=Φ(B)Φ(A)\Delta=\Phi(B)-\Phi(A) A=amσ,  B=bmσA=\frac{a-m}{\sigma},\;B=\frac{b-m}{\sigma}

    and Φ()\Phi(\cdot) is cumulative distribution function of standard normal distribution.

  • Probability density function

    f(x)=1σΔϕ(xmσ)f(x)=\frac{1}{\sigma\Delta}\phi\left(\frac{x-m}{\sigma}\right)
  • How to compute these on Excel.

AB
1DataDescription
22.5Value for which you want the distribution
31Value of parameter Min
44Value of parameter Max
53Value of parameter M
60.9Value of parameter Sigma
7FormulaDescription (Result)
8=NTTRUNCNORMDIST(A2,A3,A4,A5,A6,TRUE)Cumulative distribution function for the terms above
9=NTTRUNCNORMDIST(A2,A3,A4,A5,A6,FALSE)Probability density function for the terms above

Sample distribution

Quantile

  • Inverse of cumulative distribution function

    F1(P)=σΦ1[ΔP+Φ(A)]+mF^{-1}(P)=\sigma\Phi^{-1}\left[\Delta P+\Phi(A)\right]+m

    where

    Δ=Φ(B)Φ(A)\Delta=\Phi(B)-\Phi(A) A=amσ,  B=amσA=\frac{a-m}{\sigma},\;B=\frac{a-m}{\sigma}

    and Φ()\Phi(\cdot) is cumulative distribution function of standard normal distribution.

  • How to compute this on Excel.

AB
1DataDescription
20.5Probability associated with the truncated normal distribution
31Value of parameter Min
44Value of parameter Max
53Value of parameter M
60.9Value of parameter Sigma
7FormulaDescription (Result)
8=NTTRUNCNORMINV(A2,A3,A4,A5,A6)Inverse of the cumulative distribution function for the terms above

Characteristics

Mean -- Where is the "center" of the distribution? (Definition)

  • Mean of the distribution is given as

    m+ϕ(A)ϕ(B)Δσm+\frac{\phi(A)-\phi(B)}{\Delta}\sigma

    where

    Δ=Φ(B)Φ(A)\Delta=\Phi(B)-\Phi(A) A=amσ,  B=amσA=\frac{a-m}{\sigma},\;B=\frac{a-m}{\sigma}

    Φ()\Phi(\cdot) and ϕ()\phi(\cdot) are probability density function and cumulative distribution function of standard normal distribution respectively.

  • How to compute this on Excel

AB
1DataDescription
21Value of parameter Min
34Value of parameter Max
43Value of parameter M
50.9Value of parameter Sigma
6FormulaDescription (Result)
7=NTTRUNCNORMMEAN(A2,A3,A4,A5)Mean of the distribution for the terms above

Standard Deviation -- How wide does the distribution spread? (Definition)

  • Variance of the distribution is given as

    [1+Aϕ(A)Bϕ(B)Δ(ϕ(A)ϕ(B)Δ)2]σ2\left[1+\frac{A\phi(A)-B\phi(B)}{\Delta}-\left(\frac{\phi(A)-\phi(B)}{\Delta}\right)^2\right]\sigma^2

    where

    Δ=Φ(B)Φ(A)\Delta=\Phi(B)-\Phi(A) A=amσ,  B=amσA=\frac{a-m}{\sigma},\;B=\frac{a-m}{\sigma}

    Φ()\Phi(\cdot) and ϕ()\phi(\cdot) are probability density function and cumulative distribution function of standard normal distribution respectively.

    Standard Deviation is a positive square root of Variance.

  • How to compute this on Excel

AB
1DataDescription
21Value of parameter Min
34Value of parameter Max
43Value of parameter M
50.9Value of parameter Sigma
6FormulaDescription (Result)
7=NTTRUNCNORMSTDEV(A2,A3,A4,A5)Standard deviation of the distribution for the terms above

Skewness -- Which side is the distribution distorted into? (Definition)

  • Skewness of the distribution is given as

    1V3/2[2Δ0+(3Δ11)Δ0+Δ2]-\frac{1}{V^{3/2}}\left[2\Delta_0+(3\Delta_{1}-1)\Delta_0+\Delta_2\right]

    where

    z(x)=ϕ(x)Δz(x)=\frac{\phi(x)}{\Delta} Δk=Bkz(B)Akz(A)\Delta_k=B^kz(B)-A^kz(A) V=1Δ1Δ02V=1-\Delta_1-\Delta_0^2 Δ=Φ(B)Φ(A)\Delta=\Phi(B)-\Phi(A) A=amσ,  B=amσA=\frac{a-m}{\sigma},\;B=\frac{a-m}{\sigma}

    Φ()\Phi(\cdot) and ϕ()\phi(\cdot) are probability density function and cumulative distribution function of standard normal distribution respectively.

  • How to compute this on Excel

AB
1DataDescription
21Value of parameter Min
34Value of parameter Max
43Value of parameter M
50.9Value of parameter Sigma
6FormulaDescription (Result)
7=NTTRUNCNORMSKEW(A2,A3,A4,A5)Skewness of the distribution for the terms above

Kurtosis -- Sharp or Dull, consequently Fat Tail or Thin Tail (Definition)

  • Kurtosis of the distribution is given as

    1V2[3Δ042Δ02(3Δ1+1)4Δ2Δ03Δ1Δ3+3]3\frac{1}{V^2}\left[-3\Delta_0^4-2\Delta_0^2(3\Delta_1+1)-4\Delta_2\Delta_0-3\Delta_1-\Delta_3+3\right]-3

    where

    z(x)=ϕ(x)Δz(x)=\frac{\phi(x)}{\Delta} Δk=Bkz(B)Akz(A)\Delta_k=B^kz(B)-A^kz(A) V=1Δ1Δ02V=1-\Delta_1-\Delta_0^2 Δ=Φ(B)Φ(A)\Delta=\Phi(B)-\Phi(A) A=amσ,  B=amσA=\frac{a-m}{\sigma},\;B=\frac{a-m}{\sigma}

    Φ()\Phi(\cdot) and ϕ()\phi(\cdot) are probability density function and cumulative distribution function of standard normal distribution respectively.

  • How to compute this on Excel

AB
1DataDescription
21Value of parameter Min
34Value of parameter Max
43Value of parameter M
50.9Value of parameter Sigma
6FormulaDescription (Result)
7=NTTRUNCNORMKURT(A2,A3,A4,A5)Kurtosis of the distribution for the terms above

Random Numbers

  • Random number x is generated by inverse function method, which is for uniform random U,

    x=σΦ1[ΔU+Φ(A)]+mx=\sigma\Phi^{-1}\left[\Delta U+\Phi(A)\right]+m

    where

    Δ=Φ(B)Φ(A)\Delta=\Phi(B)-\Phi(A) A=amσ,  B=amσA=\frac{a-m}{\sigma},\;B=\frac{a-m}{\sigma}

    Φ()\Phi(\cdot) and ϕ()\phi(\cdot) are probability density function and cumulative distribution function of standard normal distribution respectively.

  • How to generate random numbers on Excel.

AB
1DataDescription
21Value of parameter Min
34Value of parameter Max
43Value of parameter M
50.9Value of parameter Sigma
6FormulaDescription (Result)
7=NTRANDTRUNCNORM(100,A2,A3,A4,A5,0)100 truncated normal deviates based on Mersenne-Twister algorithm for which the parameters above

Note The formula in the example must be entered as an array formula. After copying the example to a blank worksheet, select the range A7:A106 starting with the formula cell. Press F2, and then press CTRL+SHIFT+ENTER.

NtRand Functions

Reference