Weibull Distribution
Where do you meet this distribution?
Shape of Distribution
Basic Properties
-
Two parameters are required (How can you get these).
-
Continuous distribution defined on semi-bounded range
-
This distribution is always asymmetric.
Probability
- How to compute these on Excel.
A | B | |
---|---|---|
1 | Data | Description |
2 | 0.5 | Value for which you want the distribution |
3 | 8 | Value of parameter Alpha |
4 | 2 | Value of parameter Beta |
5 | Formula | Description (Result) |
6 | =NTWEIBULLDIST(A2,A3,A4,TRUE) | Cumulative distribution function for the terms above |
7 | =NTWEIBULLDIST(A2,A3,A4,FALSE) | Probability density function for the terms above |
-
Cumulative distribution function
-
Function reference : NTWEIBULLDIST
Quantile
-
Inverse function of cumulative distribution function
-
How to compute this on Excel.
A | B | |
---|---|---|
1 | Data | Description |
2 | 0.7 | Probability associated with the distribution |
3 | 1.7 | Value of parameter Alpha |
4 | 0.9 | Value of parameter Beta |
5 | Formula | Description (Result) |
6 | =WEIBULLINV(A2,A3,A4) | Inverse of the cumulative distribution function for the terms above |
- Function reference : NTWEIBULLINV
Characteristics
Mean -- Where is the "center" of the distribution? (Definition)
-
Mean of the distribution is given as
where is gamma function.
-
How to compute this on Excel
A | B | |
---|---|---|
1 | Data | Description |
2 | 8 | Value of parameter Alpha |
3 | 2 | Value of parameter Beta |
4 | Formula | Description (Result) |
5 | =NTWEIBULLMEAN(A2,A3) | Mean of the distribution for the terms above |
- Function reference : NTWEIBULLMEAN
Standard Deviation -- How wide does the distribution spread? (Definition)
-
Variance of the distribution is given as
where
, is mean of the distribution and is gamma function
Standard Deviation is a positive square root of Variance.
-
How to compute this on Excel
A | B | |
---|---|---|
1 | Data | Description |
2 | 8 | Value of parameter Alpha |
3 | 2 | Value of parameter Beta |
4 | Formula | Description (Result) |
5 | =NTWEIBULLSTDEV(A2,A3) | Standard deviation of the distribution for the terms above |
- Function reference : NTWEIBULLSTDEV
Skewness -- Which side is the distribution distorted into? (Definition)
-
Skewness of the distribution is given as
where
, is mean of the distribution, is variance of the distribution, is gamma function and is standard deviation of the distribution.
-
How to compute this on Excel
A | B | |
---|---|---|
1 | Data | Description |
2 | 8 | Value of parameter Alpha |
3 | 2 | Value of parameter Beta |
4 | Formula | Description (Result) |
5 | =NTWEIBULLSKEW(A2,A3) | Skewness of the distribution for the terms above |
- Function reference : NTWEIBULLSKEW
Kurtosis -- Sharp or Dull, consequently Fat Tail or Thin Tail (Definition)
-
Kurtosis of the distribution is given as
where
, is gamma function, is mean of the distribution, is standard deviation of the distribution and is skewness of the distribution.
-
How to compute this on Excel
A | B | |
---|---|---|
1 | Data | Description |
2 | 8 | Value of parameter Alpha |
3 | 2 | Value of parameter Beta |
4 | Formula | Description (Result) |
5 | =NTWEIBULLKURT(A2,A3) | Kurtosis of the distribution for the terms above |
- Function reference : NTWEIBULLKURT
Random Numbers
-
Random number x is generated by inverse function method, which is for uniform random U,
-
How to generate random numbers on Excel.
A | B | |
---|---|---|
1 | Data | Description |
2 | 0.5 | Value of parameter Alpha |
3 | 0.5 | Value of parameter Beta |
4 | Formula | Description (Result) |
5 | =NTRANDWEIBULL(100,A2,A3,0) | 100 Weibull deviates based on Mersenne-Twister algorithm for which the parameters above |
Note The formula in the example must be entered as an array formula. After copying the example to a blank worksheet, select the range A5:A104 starting with the formula cell. Press F2, and then press CTRL+SHIFT+ENTER.
NtRand Functions
- If you already have parameters of the distribution
- Generating random numbers based on Mersenne Twister algorithm: NTRANDWEIBULL
- Computing probability : NTWEIBULLDIST
- Computing mean : NTWEIBULLMEAN
- Computing standard deviation : NTWEIBULLSTDEV
- Computing skewness : NTWEIBULLSKEW
- Computing kurtosis : NTWEIBULLKURT
- Computing moments above at once : NTWEIBULLMOM
- If you know mean and standard deviation of the distribution
- Estimating parameters of the distribution:NTWEIBULLPARAM