Skip to main content

Weibull Distribution

Where do you meet this distribution?

Shape of Distribution

Basic Properties

  • Two parameters α,β\alpha, \beta are required (How can you get these).

    α>0,β>0\alpha>0,\beta>0
  • Continuous distribution defined on semi-bounded range x0x \geq 0

  • This distribution is always asymmetric.

Probability

  • How to compute these on Excel.
AB
1DataDescription
20.5Value for which you want the distribution
38Value of parameter Alpha
42Value of parameter Beta
5FormulaDescription (Result)
6=NTWEIBULLDIST(A2,A3,A4,TRUE)Cumulative distribution function for the terms above
7=NTWEIBULLDIST(A2,A3,A4,FALSE)Probability density function for the terms above
  • Cumulative distribution function

    F(x)=1exp[(xβ)α]F(x)=1-\exp\left[-\left(\frac{x}{\beta}\right)^\alpha\right]
  • Probability density function

    f(x)=αβ(xβ)α1exp[(xβ)α]f(x)=\frac{\alpha}{\beta}\left(\frac{x}{\beta}\right)^{\alpha-1}\exp\left[-\left(\frac{x}{\beta}\right)^{\alpha}\right]
  • Function reference : NTWEIBULLDIST

Sample distribution

Quantile

  • Inverse function of cumulative distribution function

    F1(P)=β(ln11P)1/αF^{-1}(P)=\beta\left(\ln\frac{1}{1-P}\right)^{1/\alpha}
  • How to compute this on Excel.

AB
1DataDescription
20.7Probability associated with the distribution
31.7Value of parameter Alpha
40.9Value of parameter Beta
5FormulaDescription (Result)
6=WEIBULLINV(A2,A3,A4)Inverse of the cumulative distribution function for the terms above

Characteristics

Mean -- Where is the "center" of the distribution? (Definition)

  • Mean of the distribution is given as

    βΓ(1+1α)\beta\Gamma\left(1+\frac{1}{\alpha}\right)

    where Γ()\Gamma(\cdot) is gamma function.

  • How to compute this on Excel

AB
1DataDescription
28Value of parameter Alpha
32Value of parameter Beta
4FormulaDescription (Result)
5=NTWEIBULLMEAN(A2,A3)Mean of the distribution for the terms above

Standard Deviation -- How wide does the distribution spread? (Definition)

  • Variance of the distribution is given as

    μ(2)m2\mu^\prime(2)-m^2

    where

    μ(r)=βrΓ(1+rα)\mu^\prime(r)=\beta^r\Gamma\left(1+\frac{r}{\alpha}\right)

    mm is mean of the distribution and Γ()\Gamma(\cdot) is gamma function

    Standard Deviation is a positive square root of Variance.

  • How to compute this on Excel

AB
1DataDescription
28Value of parameter Alpha
32Value of parameter Beta
4FormulaDescription (Result)
5=NTWEIBULLSTDEV(A2,A3)Standard deviation of the distribution for the terms above

Skewness -- Which side is the distribution distorted into? (Definition)

  • Skewness of the distribution is given as

    1σ3[μ(3)3mσ2m3]\frac{1}{\sigma^3}\left[\mu^\prime(3)-3m\sigma^2-m^3\right]

    where

    μ(r)=βrΓ(1+rα)\mu^\prime(r)=\beta^r\Gamma\left(1+\frac{r}{\alpha}\right)

    mm is mean of the distribution, σ2\sigma^2 is variance of the distribution, Γ()\Gamma(\cdot) is gamma function and σ\sigma is standard deviation of the distribution.

  • How to compute this on Excel

AB
1DataDescription
28Value of parameter Alpha
32Value of parameter Beta
4FormulaDescription (Result)
5=NTWEIBULLSKEW(A2,A3)Skewness of the distribution for the terms above

Kurtosis -- Sharp or Dull, consequently Fat Tail or Thin Tail (Definition)

  • Kurtosis of the distribution is given as

    μ(4)4γ1σ3m6m2σ2m4σ43\frac{{\mu^\prime}(4)-4\gamma_1\sigma^3m-6m^2\sigma^2-m^4}{\sigma^4}-3

    where

    μ(r)=βrΓ(1+rα)\mu^\prime(r)=\beta^r\Gamma\left(1+\frac{r}{\alpha}\right)

    Γ()\Gamma(\cdot) is gamma functionmm is mean of the distribution, σ\sigma is standard deviation of the distribution and γ1\gamma_1 is skewness of the distribution.

  • How to compute this on Excel

AB
1DataDescription
28Value of parameter Alpha
32Value of parameter Beta
4FormulaDescription (Result)
5=NTWEIBULLKURT(A2,A3)Kurtosis of the distribution for the terms above

Random Numbers

  • Random number x is generated by inverse function method, which is for uniform random U,

    x=β(ln11U)1/αx=\beta\left(\ln\frac{1}{1-U}\right)^{1/\alpha}
  • How to generate random numbers on Excel.

AB
1DataDescription
20.5Value of parameter Alpha
30.5Value of parameter Beta
4FormulaDescription (Result)
5=NTRANDWEIBULL(100,A2,A3,0)100 Weibull deviates based on Mersenne-Twister algorithm for which the parameters above

Note The formula in the example must be entered as an array formula. After copying the example to a blank worksheet, select the range A5:A104 starting with the formula cell. Press F2, and then press CTRL+SHIFT+ENTER.

NtRand Functions

Reference