Skip to main content

Gumbel (Type I) Distribution

Where do you meet this distribution?

Shape of Distribution

Basic Properties

  • Two parameters α,β\alpha, \beta are required (How can you get these).

    β>0\beta>0
  • Continuous distribution defined on entire range

  • This distribution is always asymmetric.

Probability

  • Cumulative distribution function

    F(x)=exp[exp(xαβ)]F(x)=\exp\left[-\exp\left(-\frac{x-\alpha}{\beta}\right)\right]
  • Probability density function

    f(x)=1βexp(xαβ)exp[exp(xαβ)]f(x)=\frac{1}{\beta}\exp\left(-\frac{x-\alpha}{\beta}\right)\exp\left[-\exp\left(-\frac{x-\alpha}{\beta}\right)\right]
  • How to compute these on Excel.

AB
1DataDescription
20.5Value for which you want the distribution
38Value of parameter Alpha
42Value of parameter Beta
5FormulaDescription (Result)
6=NTGUMBELDIST(A2,A3,A4,TRUE)Cumulative distribution function for the terms above
7=NTGUMBELDIST(A2,A3,A4,FALSE)Probability density function for the terms above

Sample distribution

Quantile

  • Inverse function of cumulative distribution function

    F1(P)=αβlnln1PF^{-1}(P)=\alpha-\beta\ln\ln\frac{1}{P}
  • How to compute this on Excel.

AB
1DataDescription
20.7Probability associated with the distribution
31.7Value of parameter Alpha
40.9Value of parameter Beta
5FormulaDescription (Result)
6=GUMBELINV(A2,A3,A4)Inverse of the cumulative distribution function for the terms above

Characteristics

Mean -- Where is the "center" of the distribution? (Definition)

  • Mean of the distribution is given as

    α+γβ\alpha+\gamma\beta

    where γ\gamma is Euler's constant.

  • How to compute this on Excel

AB
1DataDescription
28Value of parameter Alpha
32Value of parameter Beta
4FormulaDescription (Result)
5=NTGUMBELMEAN(A2,A3)Mean of the distribution for the terms above

Standard Deviation -- How wide does the distribution spread? (Definition)

AB
1DataDescription
22Value of parameter Beta
3FormulaDescription (Result)
4=NTGUMBELSTDEV(A2)Standard deviation of the distribution for the terms above

Skewness -- Which side is the distribution distorted into? (Definition)

  • Skewness of the distribution is given as

    126ζ(3)π3=1.139547099-\frac{12\sqrt{6}\zeta(3)}{\pi^3}=-1.139547099\cdots

    where ζ()\zeta(\cdot) is Riemann zeta function.

Kurtosis -- Sharp or Dull, consequently Fat Tail or Thin Tail (Definition)

  • Kurtosis of the distribution is 2.42.4

Random Numbers

  • Random number x is generated by inverse function method, which is for uniform random U,

    x=αβlnln1Ux=\alpha-\beta\ln\ln\frac{1}{U}
  • How to generate random numbers on Excel.

AB
1DataDescription
20.5Value of parameter Alpha
30.5Value of parameter Beta
4FormulaDescription (Result)
5=NTRANDGUMBEL(100,A2,A3,0)100 Gumbel Type I deviates based on Mersenne-Twister algorithm for which the parameters above

Note The formula in the example must be entered as an array formula. After copying the example to a blank worksheet, select the range A5:A104 starting with the formula cell. Press F2, and then press CTRL+SHIFT+ENTER.

NtRand Functions

Reference