Skip to main content

Pareto Distribution

Where do you meet this distribution?

Shape of Distribution

Basic Properties

  • Two parameters a,ba, b are required.

    a>0,b>0a>0, b>0
  • Continuous distribution defined on semi-infinite range x>bx>b

  • This distribution is always asymmetric.

Probability

AB
1DataDescription
25Value for which you want the distribution
38Value of parameter A
42Value of parameter B
5FormulaDescription (Result)
6=1-POWER(A4/A2,A3)Cumulative distribution function for the terms above
7=A3*A4^A3/POWER(A2,A3+1)Probability density function for the terms above

Quantile

  • Inverse function of cumulative distribution function

    F1(P)=b(1P)1/aF^{-1}(P)=\frac{b}{(1-P)^{1/a}}
  • How to compute this on Excel.

AB
1DataDescription
20.7Probability associated with the distribution
31.7Value of parameter A
40.9Value of parameter B
5FormulaDescription (Result)
6=A4/POWER(1-A2,1/A3)Inverse of the cumulative distribution function for the terms above

Characteristics

Mean -- Where is the "center" of the distribution? (Definition)

  • Mean of the distribution is given as

    aba1\frac{ab}{a-1}
  • How to compute this on Excel

AB
1DataDescription
28Value of parameter Alpha
32Value of parameter Beta
4FormulaDescription (Result)
5=A2*A3/(A2-1)Mean of the distribution for the terms above

Standard Deviation -- How wide does the distribution spread? (Definition)

  • Variance of the distribution is given as

    ab2(a1)2(a2)\frac{ab^2}{(a-1)^2(a-2)}

    Standard Deviation is a positive square root of Variance.

  • How to compute this on Excel

AB
1DataDescription
28Value of parameter A
32Value of parameter B
4FormulaDescription (Result)
5=A3/(A2-1)*SQRT(A2/(A2-2))Standard deviation of the distribution for the terms above

Skewness -- Which side is the distribution distorted into? (Definition)

  • Skewness of the distribution is given as

    a2a2(a+1)a3\sqrt{\frac{a-2}{a}}\frac{2(a+1)}{a-3}
  • How to compute this on Excel

AB
1DataDescription
28Value of parameter A
3FormulaDescription (Result)
4=SQRT((A2-2)/A2)*2*(A2+1)/(A2-3)Skewness of the distribution for the terms above

Kurtosis -- Sharp or Dull, consequently Fat Tail or Thin Tail (Definition)

  • Kurtosis of the distribution is given as

    6(a3+a26a2)a(a3)(a4)\frac{6(a^3+a^2-6a-2)}{a(a-3)(a-4)}
  • How to compute this on Excel

AB
1DataDescription
28Value of parameter A
3FormulaDescription (Result)
4=6*(A2^3+A2^2-6*A2-2)/(A2*(A2-3)*(A2-4))Kurtosis of the distribution for the terms above

Random Numbers

  • Random number x is generated by inverse function method, which is for uniform random U,

    x=b(1U)1/ax=\frac{b}{(1-U)^{1/a}}
  • How to generate random numbers on Excel.

AB
1DataDescription
20.5Value of parameter A
32Value of parameter B
4FormulaDescription (Result)
5=A3/POWER(1-NTRAND(100),1/A2)100 Pareto deviates based on Mersenne-Twister algorithm for which the parameters above

Note The formula in the example must be entered as an array formula. After copying the example to a blank worksheet, select the range A5:A104 starting with the formula cell. Press F2, and then press CTRL+SHIFT+ENTER.

NtRand Functions

Not supported yet

Reference