Skip to main content

Poisson Distribution

Where do you meet this distribution?

Shape of Distribution

Basic Properties

  • A parameter ν\nu is required.
ν>0 \nu>0

ν\nu is mean of the distribution.

  • Discrete distribution defined at non-negative integer x=0,1,2,x={0,1,2,\cdots}

Probability

AB
1DataDescription
23Value for which you want the distribution
35Value of parameter nu
4FormulaDescription (Result)
5=NTPOISSONDIST(A2,A3,TRUE)Cumulative distribution function for the terms above
6=NTPOISSONDIST(A2,A3,FALSE)Probability mass function for the terms above

Triangular distribution

Characteristics

Mean -- Where is the "center" of the distribution? (Definition)

  • Mean is given as ν\nu

Standard Deviation -- How wide does the distribution spread? (Definition)

Skewness -- Which side is the distribution distorted into? (Definition)

  • Skewness of the distribution is given as

    1ν\frac{1}{\sqrt{\nu}}
  • How to compute this on Excel

AB
1DataDescription
28Value of parameter nu
3FormulaDescription (Result)
4=NTPOISSONSKEW(A2)Mean of the distribution for the terms above

Kurtosis -- Sharp or Dull, consequently Fat Tail or Thin Tail (Definition)

  • Kurtosis of the distribution is given as

    1ν\frac{1}{\nu}
  • How to compute this on Excel

AB
1DataDescription
28Value of parameter nu
3FormulaDescription (Result)
4=NTPOISSONKURT(A2)Mean of the distribution for the terms above

Random Numbers

  • How to generate random numbers.
AB
1DataDescription
26Value of parameter nu
3FormulaDescription (Result)
4=NTRANDPOISSON(100,A2,0)100 Poisson deviates based on Mersenne-Twister algorithm for which the parameters above

Note The formula in the example must be entered as an array formula. After copying the example to a blank worksheet, select the range A4:A103 starting with the formula cell. Press F2, and then press CTRL+SHIFT+ENTER.

NtRand Functions

Reference