Gamma Distribution
Shape of Distribution
Basic Properties
-
Two parameters are required (How can you get these?)
-
Continuous distribution defined on semi-bounded range
-
This distribution is asymmetric.
Probability
-
, where is gamma function.
-
Cumulative distribution function
, where is incomplete gamma function.
-
How to compute these on Excel.
A | B | |
---|---|---|
1 | Data | Description |
2 | 5 | Value for which you want the distribution |
3 | 4 | Value of parameter Alpha |
4 | 2.3 | Value of parameter Beta |
5 | Formula | Description (Result) |
6 | =NTGAMMADIST(A2,A3,A4,TRUE) | Cumulative distribution function for the terms above |
7 | =NTGAMMADIST(A2,A3,A4,FALSE) | Probability density function for the terms above |
- Function reference : NTGAMMADIST
Quantile
- Inverse function of cumulative distribution function cannot be expressed in closed form.
- GAMMAINV is an excel function.
- How to compute this on Excel.
A | B | |
---|---|---|
1 | Data | Description |
2 | 0.7 | Probability associated with the distribution |
3 | 4 | Value of parameter Alpha |
4 | 2.3 | Value of parameter Beta |
5 | Formula | Description (Result) |
6 | =GAMMAINV(A2,A3,A4) | Inverse of the cumulative distribution function for the terms above |
Characteristics
Mean -- Where is the "center" of the distribution? (Definition)
-
Mean of the distribution is given as
-
How to compute this on Excel
A | B | |
---|---|---|
1 | Data | Description |
2 | 4 | Value of parameter Alpha |
3 | 2.3 | Value of parameter Beta |
4 | Formula | Description (Result) |
5 | =NTGAMMAMEAN(A2,A3) | Mean of the distribution for the terms above |
- Function reference : NTGAMMAMEAN
Standard Deviation -- How wide does the distribution spread? (Definition)
-
Variance of the distribution is given as
Standard Deviation is a positive square root of Variance.
-
How to compute this on Excel
A | B | |
---|---|---|
1 | Data | Description |
2 | 4 | Value of parameter Alpha |
3 | 2.3 | Value of parameter Beta |
4 | Formula | Description (Result) |
5 | =NTGAMMASTDEV(A2,A3) | Standard deviation of the distribution for the terms above |
- Function reference : NTGAMMASTDEV
Skewness -- Which side is the distribution distorted into? (Definition)
-
Skewness of the distribution is given as
-
How to compute this on Excel
A | B | |
---|---|---|
1 | Data | Description |
2 | 4 | Value of parameter Alpha |
3 | Formula | Description (Result) |
4 | =NTGAMMASKEW(A2) | Skewness of the distribution for the terms above |
- Function reference : NTGAMMASKEW
Kurtosis -- Sharp or Dull, consequently Fat Tail or Thin Tail (Definition)
-
Kurtosis of the distribution is given as
-
This distribution can be leptokurtic or platykurtic.
-
How to compute this on Excel
A | B | |
---|---|---|
1 | Data | Description |
2 | 4 | Value of parameter Alpha |
3 | Formula | Description (Result) |
4 | =NTGAMMAKURT(A2) | Kurtosis of the distribution for the terms above |
- Function reference : NTGAMMAKURT
Random Numbers
- How to generate random numbers on Excel.
A | B | |
---|---|---|
1 | Data | Description |
2 | 4 | Value of parameter Alpha |
3 | 2.3 | Value of parameter Beta |
4 | Formula | Description (Result) |
5 | =NTRANDGAMMA(100,A2,A3,0) | 100 gamma deviates based on Mersenne-Twister algorithm for which the parameters above |
Note The formula in the example must be entered as an array formula. After copying the example to a blank worksheet, select the range A5:A104 starting with the formula cell. Press F2, and then press CTRL+SHIFT+ENTER.
- Function reference : NTRANDGAMMA
NtRand Functions
- If you already have parameters of the distribution
- Generating random numbers based on Mersenne Twister algorithm: NTRANDGAMMA
- Computing probability : NTGAMMADIST
- Computing mean : NTGAMMAMEAN
- Computing standard deviation : NTGAMMASTDEV
- Computing skewness : NTGAMMASKEW
- Computing kurtosis : NTGAMMAKURT
- Computing moments above at once : NTGAMMAMOM
- If you know mean and standard deviation of the distribution
- Estimating parameters of the distribution:NTGAMMAPARAM