Skip to main content

Johnson SB Distribution

Where will you meet this distribution?

Shape of Distribution

Basic Properties

  • Four parameters γ,δ,λ,ξ\gamma, \delta,\lambda,\xi are required.

    δ>0,λ>0\delta>0,\lambda>0
  • Continuous distribution defined on bounded range ξxξ+λ\xi\leq x \leq \xi+\lambda

  • This distribution can be symmetric or asymmetric.

Probability

  • Cumulative distribution function

    F(x)=Φ(γ+δlnz1z)F(x)=\Phi\left(\gamma+\delta\ln\frac{z}{1-z}\right)

    where

    z=xξλz=\frac{x-\xi}{\lambda}

    and Φ()\Phi(\cdot) is cumulative distribution function of standard normal distribution.

  • Probability density function

    f(x)=δλ2πz(1z)exp[12(γ+δlnz1z)2]f(x)=\frac{\delta}{\lambda\sqrt{2\pi}z(1-z)}\exp\left[-\frac{1}{2}\left(\gamma+\delta\ln\frac{z}{1-z}\right)^2\right]
  • How to compute these on Excel.

AB
1DataDescription
20.5Value for which you want the distribution
38Value of parameter Gamma
42Value of parameter Delta
52Value of parameter Lambda
62Value of parameter Xi
7=(A2-A5)/A4Standardized variable z
8FormulaDescription (Result)
9=NORMSDIST(A3+A4*LN(A7/(1-A7)))Cumulative distribution function for the terms above
10=A4*EXP(-0.5*(A3+A4*LN(A7/(1-A7)))^2)/(SQRT(2*PI())*A5*A7*(1-A7))Probability density function for the terms above

Quantile

  • Inverse function of cumulative distribution function

    F1(P)=λexp(Φ1(P)γδ)1+exp(Φ1(P)γδ)+ξF^{-1}(P)=\frac{\lambda\exp\left(\frac{\Phi^{-1}(P)-\gamma}{\delta}\right)}{1+\exp\left(\frac{\Phi^{-1}(P)-\gamma}{\delta}\right)}+\xi

    where Φ()\Phi(\cdot) is cumulative distribution function of standard normal distribution.

  • How to compute this on Excel.

AB
1DataDescription
20.5Probability associated with the distribution
31.7Value of parameter Gamma
40.9Value of parameter Delta
50.9Value of parameter Lambda
60.9Value of parameter Xi
7FormulaDescription (Result)
8=A5*EXP((NORMSINV(A2)-A3)/A4)/(1+EXP((NORMSINV(A2)-A3)/A4))+A6Inverse of the cumulative distribution function for the terms above

Random Numbers

  • Random number x is generated by inverse function method, which is for uniform random U,

    x=λexp(Φ1(U)γδ)1+exp(Φ1(U)γδ)+ξx=\frac{\lambda\exp\left(\frac{\Phi^{-1}(U)-\gamma}{\delta}\right)}{1+\exp\left(\frac{\Phi^{-1}(U)-\gamma}{\delta}\right)}+\xi

    where Φ()\Phi(\cdot) is cumulative distribution function of standard normal distribution.

  • How to generate random numbers on Excel.

AB
1DataDescription
20.5Value of parameter Gamma
30.5Value of parameter Delta
40.5Value of parameter Lambda
50.5Value of parameter Xi
6FormulaDescription (Result)
7=A4*EXP((NORMSINV(NTRAND(100))-A2)/A3)/(1+EXP((NORMSINV(NTRAND(100))-A2)/A3))+A5100 Johnson SB deviates based on Mersenne-Twister algorithm for which the parameters above

Note The formula in the example must be entered as an array formula. After copying the example to a blank worksheet, select the range A7:A106 starting with the formula cell. Press F2, and then press CTRL+SHIFT+ENTER.

NtRand Functions

Not supported yet

Reference