Skip to main content

Normal Distribution (Single variable)

Where do you meet this distribution?

  • Standard score
  • Finance, Economics : changes in the logarithm of exchange rates, price indices, and stock market indices are assumed normal
  • Average of stochastic variables : Central Limit Theorem
  • Statistical mechanics : Velocities of the molecules in the ideal gas
  • Quantum physics : Probability density function of a ground state in a quantum harmonic oscillator
  • Error analysis

Shape of Distribution

Basic Properties

  • Two parameters m,σm, \sigma are required.
σ>0 \sigma>0

These parameters are Mean and Standard Deviation of the distribution respectively.

  • Continuous distribution defined on entire range
  • This distribution is always symmetric.

Probability

F(x)=xϕ(tmσ)dt F(x)=\int_{-\infty}^{x}\phi\left(\frac{t-m}{\sigma}\right)\text{d}t

where ϕ()\phi(\cdot) is Probability density function of standard normal distribution.

f(x)=12πσexp[(xm)22σ2] f(x)=\frac{1}{\sqrt{2\pi}\sigma}\exp\left[-\frac{(x-m)^2}{2\sigma^2}\right]
  • How to compute these on Excel.
AB
1DataDescription
20.5Value for which you want the distribution
38Value of parameter M
42Value of parameter Sigma
5FormulaDescription (Result)
6=NTNORMDIST((A2-A3)/A4,TRUE)Cumulative distribution function for the terms above
7=NTNORMDIST((A2-A3)/A4,FALSE)Probability density function for the terms above

Sample distribution

Quantile

AB
1DataDescription
20.7Probability associated with the distribution
31.7Value of parameter M
40.9Value of parameter Sigma
5FormulaDescription (Result)
6=A4*NORMSINV(A2)+A3Inverse of the cumulative distribution function for the terms above

Characteristics

Mean -- Where is the "center" of the distribution? (Definition)

  • Mean of the distribution is given as mm.

Standard Deviation -- How wide does the distribution spread? (Definition)

  • Standard deviation of the distribution is given as σ\sigma.

Skewness -- Which side is the distribution distorted into? (Definition)

  • Skewness of the distribution is given as 00.

Kurtosis -- Sharp or Dull, consequently Fat Tail or Thin Tail (Definition)

  • Kurtosis of the distribution is given as 00.

Random Numbers

  • How to generate random numbers on Excel.
AB
1DataDescription
20.5Value of parameter M
30.5Value of parameter Sigma
4FormulaDescription (Result)
5=A3*NTRANDNORM(100)+A2100 Normal deviates based on Mersenne-Twister algorithm for which the parameters above

Note The formula in the example must be entered as an array formula. After copying the example to a blank worksheet, select the range A5:A104 starting with the formula cell. Press F2, and then press CTRL+SHIFT+ENTER.

NtRand Functions

  • Generating random numbers based on Mersenne Twister algorithm: NTRANDNORM

Reference